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Abstract. Annihilation spectra. resulting from the implantation of mono-energetic positrons 
in a perfect homogeneous solid, have been modelled allowing for the transport of both 
thermal and epithermal positrons. The  resulting curves resemble a Sum of two exponential 
components, although the intensities are not simply related to the positron back-diffusion 
probability. Because of the very short times involved, the effects of non-thermal positron 
transport are less significant than fur steady-state diffusion models. At room temperature, 
internal reflection of thermal positrons at the surface has little effect on the solution to the 
diifusion equation for deeply implanted positrons. 

1. Introduction 

The motion and subsequent escape or annihilation of positronsimplanted into a homo- 
geneous defect-free solid are well described by a one-dimensional diffusion equation [ 11 

D a2u/az2 - t )  = aula2 (1) 

where D is the diffusion coefficient and z the depth inside the material. Positrons can be 
lost from the system at the surface or by annihilation, determined by the decay rate A. 

In traditional positron beam experiments, mono-energetic positrons are implanted 
in a sample and the total fraction diffusing back to the surface is measured, either 
directly or from the fractionofpositronium (Ps) formed. Alternatively the characteristic 
annihilation lineshape parameter is measured and taken to be a weighted superposition 
of bulk and surface values. The different experimental and analytical methods are 
extensively covered in a recent review by Schultz and Lynn [2], and only the relevant 
details are presented here. In these cases the measurement is averaged over the life of 
the positrons and a steady-state diffusion equation 

D a2u/az2 - A u ( z )  + P ( Z )  = o (2) 

can be applied. Here P(r)  is a time-averaged source of positrons, normally taken as the 
positron implantation profile which is well known from both experiment [3] and Monte 
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Carlo simulations [4] to be very nearly the derivative of a Gaussian with an energy- 
dependent range xo. For a perfectly absorbing surface, the probability that a positron 
escapes from the sample is simply the Laplace transform of the implantation profile 

J = joz P ( z )  exp( - f) dz. (3) 

The transform variable is the inverse of the positron diffusion length L ,  which is related 
to the diffusion coefficient and bulk annihilation rate by L2 = D/h. The probability 
of forming Ps or the contribution to the surface lineshape parameter is then simply 
proportional to J. 

In bulk positron annihilation studies. one of the most useful parameters to study is 
the positron lifetime. which is very sensitive to different material conditions. This has 
led to the relatively recent development of time-resolved low-energy positron beams 
such as the RF pulsed beam at Munich [ 5 ] .  Another method is to use the secondary 
electrons emitted as the positron impinges on the sample as a start signal for a timing 
spectrometer [6]. However. in calculating the contribution of the different surface 
process to the lifetime spectrum, the full time-dependent diffusion equation must be 
solved. Frieze et ai (71 have presented a solution for the case of thermal positrons 
implanted in a solid which describes the essential effects of diffusion on the lifetime 
spectrum. The present work builds on this, to consider two effects which have recently 
been recognized as significant in steady-state measurements. These are internal reflec- 
tionofthe positron wavefunction at thesurface Island thecontributionof unthermalized 
positrons reaching the surface at low implantation energies [9]. Unlike the earlier work, 
trapping at bulk defects is not considered. 

2. Diffusion and annihilation of positrons 

Theobservedpositronlifetimespectrum isasuperposition oftheannihilation ratesfrom 
all possiblestates, where each partialcomponent issimply the product of the population 
and an intrinsic annihilation rate. Although the annihilation spectrum contains no direct 
spatial information, the solution to the positron transport equations yields the time 
development of the different populations. The measured annihilation rate is then 

N(r) = Anb( t )  + A,n,(t) + h p S n p ( r )  (4) 

where the subscripts b, sand ps refer to free thermal (bulk) positrons, those trapped in 
the surface state and para-positronium (p-Ps), respectively. The other surface processes 
can be neglected; ortho-positronium (0-Ps) will travel too far, within its 142 ns lifetime, 
to be detected and, in the absence ofelectrons, free positrons do not annihilate. 

Of the three populations, only the bulk can be obtained directly from the solution to 
the positron diffusion equation, by simple integration of the thermal positron dis- 
tribution over all space. In practice. if epithermal transport is also included, it  is more 
convenient to solve for this term in the same manner as for the Ps and surface-state 
populations. Rate equations for the different process can be constructed as for bulk 
lifetime experiments. Consideringonly the surfacestate, the total rateofchangeisequal 



Positrons implanted in semi-infinite medium 683 

to the difference between the partial sink rate out of the bulk and the annihilation from 
the surface state. Therefore, 

dn$t = -&n&) + (E./E)K&) + ( v , / v ) ~ d t ) .  (5) 

Equation (5) has a similar form to the usual kinetic rate equations which describe 
positrontrapping in solids, with theimportant difference that the thermaland epithermal 
sinkratesKgand~,aretime-dependent functions which derive directlyfrom the solutions 
to the respective transport equations. The partial absorption coefficients E~ and us 
determine the branching ratios to the different channels. Similar equations can be 
constructed for the bulk and p-Ps states. Neglecting thermally activated desorption of 
trapped positrons as Ps [2], the rate equation for Ps annihilation has an identical form 
with equation ( 5 ) .  At room temperature, desorption is usually negligible, but when 
present should be easily seen as a reduction in the effective surface-state lifetime. 

3. Effect of an imperfectly absorbing surface 

Thermal positrons have kinetic energies (relative to the crystal zero) much smaller than 
the surface potential barrier and are expected to have a limited probability for both 
escape and Ps formation, because of reflection of the positron wavefunction [l]. In this 
case a radiative boundary condition to the diffusion equation, describing the sink rate 
as proportional to the concentration at the surface, 

D (au/az)l,=o = m ( 0 ,  t )  (6) 

is necessary. The absorption coefficient U is directly related to the quantum mechanical 
transmission coefficient of the positron wavefunction and should therefore vanish as the 
temperature approaches zero. Such a reduction has been experimentally observed [SI, 
in agreement with the solution of Nieminen and Oliva [ l ]  for the time-averaged back 
diffusion probability: 

The time-dependent diffusion equation (equation (1)) is best solved by a Green 
function method. For a radiative boundary condition and an initial distribution, the 
Green function for a source at depth x is [lo] 

- _  E e x p ( z )  I” exp[ -(m - z)] dv}. 
401 D -e 

Excluding the integral and bulk annihilation term, this is the Green function G, for 
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the non-decaying diffusion equation with Neumann boundary conditions (perfectly 
reflecting surface). Hence equation (8) can be rewritten as 

C ( z l x , t )  = exp(-At) [ G , ( z / x , r )  - G~(zlx.r)]  (9) 

where Go integrates to 
/- Go = ( ~ ~ i o )  exp1(u/D)(z + x + ut ) ]  erfc[(z + x t 2 u t ) / t 4 D t ] .  (.lo) 

The solution to the diffusion equation. for an initial distribution P ( x ) ,  is then given by 
the integral 

I+, I )  = exp( -At)  P ( x ) [ G r ( z l x ,  t )  + G,)(zlx, t ) ]  dx. (11) l 
For the Gaussian derivative implantation profile, 

P(x) = ( & / x i )  exp(-x’/xi) (12) 
the term involving G,, is not analytically integrable. However, for typical room-tem- 
pcrature values of D and U of 1 cm2 s-I [ 111 and lo5 cm s-’ [12 ,13 ] ,  the argument of the 
complementary error function is always large. Thzefore it can be replaced with the 
asymptotic limit lim,-.z[erfc(p)] = [exp(-y2)]/ydn. resulting in the Green function 

G(zlx, t )  = [ e x p ( - A f ) / G ] { e x p [ -  ( z  - x)’/4Dt] - exp[-(z + x)’/4Dr] 

+ {2(.z + x ) / [ ( z  + x )  + 2ur]}exp[-(z + x ) l / 4 D t ] } .  (13)  
On the assumption that, for a strongly absorbing surface, within the time interval 
measured ut is large, the approximate Green function can be written as 

~ ( z l x ,  t )  = exp(-At) { ~ ~ ( z l x ,  I )  + [ ( z  + x ) / u t d 4 r r ~ t ]  

where C, represents the first two terms in equation (13) and is thc Green function for a 
perfectly absorbing surface (Dirichlet boundary conditions). 

- 

x exp( - (z  + x)* /4Dt ] l  ~ 4 )  

Calculating the sink rate at the surface by differentiation of G(zlx, t )  yields 

D ( d C / d Z ) l z = o  5 u C ( O [ x , I ) [ l  + ( D / U x ) ( l  -X2/2DI)]. (15) 
From equation (15)  it can be seen that internal reflection at the surface can be neglected 
if u x  5> D .  This condition is simply a statement that transmission through the surface is 
limited by diffusion for deeply implanted positrons and by the transition rate for shallow 
implantation. It is not obvious, andcertainly an important consideration, as to whether 
this is satisfied in  any experimental measurement. Using the above values of U and D ,  
as typical ambient-temperature values. the limiting depth is 1000 A. In  many cases, 
therefore, the effects of finite surface transmission can be neglected. As discussed in the 
next section. the simple diffusion model no longer applies for positrons implanted at 
shallower depths because many positrons return to the surface before thermalizing. 

However, the above inequality was estimated for positrons implanted at a fixed 
depth x .  For a distributed implantation profile ((equation (E)), x can, in principle, be 
replaced by the range xo,  but a large fraction of the distribution is nearer the surface. 
This will have the effect of increasing the limiting range, beyond which reflection can be 
ignored, for a given absorption coefficient. 

To obtain a quantitative measure of the effect of finite transmission, the diffusion- 
annihilation equations have also been solved numerically usinga finite-element method. 
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Figure 1. The total sink rate through the surface 
for positrons implanted a t  a range of 5000 8, for 
different values of the surface absorption coef- 
ficient Y. The curve marked = is the analytical 
solution for a perfectly absorbing surface. Typical 
values of 1 cm? s-' and 100 ps were used for the 
diffusion coefficient and bulk lifetime, respect- 
ively. 

100 <no BOO DO0 \*P , 1 0 0  ,110 
T I M E  PI 

Figure 2. The surface population for positrons 
implanredatsrangeof5000 8,fordifferenr values 
o f t h e  surface absorptioncoefficient Y ,  The curve 
marked r is the analytical solution for a perfectly 
absorbing surface. Typical values of 1 cm's-', 
lOOpsand450pswereusedforthediffusioncoef- 
ficient, bulk lifetime andsurface lifetime, respect- 
ively. The branchina ratio to the aurface state was 
held constant at t 

A detailed description of the computer program will be published elsewhere. Except for 
the absorption coefficient v, typical value for the positron parameters were used (see 
figure captions for exact values). Figure 1 shows the total sink rate through the surface 
for the Gaussian derivative profile (equation (12)) and amean implantation depth x,of 
5000 8, (corresponding to a beam energy of about -8.5 keV in AI or 17.5 keV in Cu) 
for different values of v. The curve marked is the analytical solution for a perfectly 
absorbing surface. For v = los cm s-Ithe sink rate isapproximately30 timeslower than 
for the perfect absorber, although all the curves have a similar form. Even for an 
absorption coefficient 100 times greater, there is still a noticeable difference. However, 
the apparently simple scaling is qualitatively in agreement with the analytical result for 
the time-averaged back diffusion probability (equation (7 ) ) .  The scaling carries over 
into the surface-state population (figure 2), which in all cases has the same form, 
increasing at short times to a maximum as positrons diffuse to the surface and then 
exponentially decayingwith the characteristic surface-state lifetime. The time at which 
the population isat a maximumismainlydependent on theinitialdepth andannihilation 
rate, and only weakly on the absorption coefficient U. The total annihilation rate, as 
calculated from equation (4) is shown in figure 3. In all cases, the p-Ps and bulk 
components mix, resulting in an annihilation spectrum which resembles a sum of two 
exponential components, with the surface absorption coefficient having a noticeable 
effect on the intensity of the longer component. However, for two different reasons, the 



Figure 3. The total annihilation rate for positrons 
implanted at arange of5000 Afordilfcrcnt values 
of the surface absorption coefficient Y .  The C U N e  
marked 1) is the analytical solution for a perfectly 
absorbing surface. Typical values of I cm2 s-I, 
100 ps, 450 ps and 125 pr were used for the dif- 
fusion coefficient, bulk, suriace and p-Ps 
lifetimes. respectivety. Thc branching ratios to 
the surface state and p-Ps were held constant at & 
a n d h ,  respectively. 

intensity of the second component is not simply related to the time-averaged back- 
diffusion probability. Firstly, a significant fraction of the implanted positrons, which 
ecape as 0-Ps or free positrons, does not contribute to the measured annihilation rate. 
Also the short component is a mixture of the diffusion determined bulk annihilation rate 
and the annihilation of the positrons which reach the surface and form p-Ps. 

4. EpithermaJ and thermal positron transport 

In a typical experiment, positrons are implanted mono-energetically into a sample and 
are assumed to achieve instantaneously a spatial distribution corresponding to the 
implantation profile P ( z )  and athermalenergy distribution. Thisisobviouslyunrealistic, 
although for deep implantation the assumption is valid as thermalization occurs in a 
much shortertime than trapping or annihilation. However, at low implantation energies, 
the simple diffusion model does not adequately describe the experimental time-inde- 
pendent results. Huomo er ai 191 explained this in terms of positrons returning to the 
surface before thermalizing and showed that better agreement could be obtained by 
simply excluding the low-energy data points in fitting the energy profile. In an early 
attempt to model the data, Britton and Rice-Evans [14] introduced, ad hoc, a second 
characteristic length for epithermal transport but wrongly attributed it to the elastic 
mean free path. Recently Kong and Lynn 1151 have developed a time-independent 
transport model including epithermal positrons. Starting from the Boltzmann equation, 
they derived both an effective epithermal diffusion coefficient and a thermalization 
length which is approximately the inelastic mean free path for positron-phonon scat- 
tering. 

Energetic positrons rapidly slow down, by electron scattering, to epithermal ener- 
gies (a few electronvolts), below which they are only able to lose their remaining energy 
through inelastic scattering with phonons. As the scattering rates and mean energy loss 
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are very much lower, the final stages of thermalization last considerably longer than the 
initial stages. Consequently, in a better approximation, the implantation profile can be 
regarded as the initial spatial distribution of the epithermal positrons. In Monte Carlo 
calculations, Valkealahti and Nieminen [4] found very little difference in the range and 
spread of the implantation profile with end-point energy. 

In a rigorous treatment, the positron diffusion equation should be solved for the 
initial spatial and energy distributions of the epithermal positrons including an energy- 
dependent diffusion coefficient and energy-dependent trapping rates at the surface. 
However, none of these energy dependences is known accurately, and furthermore 
the dependences are almost certainly strongly material dependent. Hence, a detailed 
treatment would have little validity and would be unnecessarily complicated. The sim- 
plest general model, which should illustrate the essential features of unthermalized 
positron escape from the sample, is a two-flux model, in which the epithennal positron 
distribution is the time-dependent source of thermal positrons. 

This paper follows the method of Kong and Lynn [15] for the time-independent 
solution, by assuming an energy-averaged epithermal distribution with asingle diffusion 
coefficient D. = U&, where U, is the positron velocity (about lo5 m s-’) and L, is the 
thermalization length (about 100 A). As the thermalization rate y is very much greater 
than the bulk annihilation rate 1, annihilation of epithermal positrons can be neglected 
and the decay term in the time-dependent diffusion equation (equation (1)) can be 
replaced by the thermalization rate. The diffusion equation is then solved for the 
epithermal distribution and the sink rate of epithermal positrons at the surface, using the 
usual implantation profile as the initial distribution and Dirichlet boundary conditions. 
Epithermal positrons have a relatively high momentum, and hence reflection at the 
surface can be assumed to be negligible. For simplicity, Dirichlet boundary conditions 
will also be applied to the thermal positron diffusion equation. 

The epithermal distribution can now be included as a time-varying source in the 
solution for the thermal distribution. This has a similar form to the original implantation 
profile, except that the mean depth increases as m. Assuming an absorbing surface, 
the relevant Green function is 

u,(z , t )  = {[XO exp(-rr)lb’x/xf + 4 D d  [2z/(d + 4 D d l  

x exp[-z2/(xa + ~DJ)] .  (16) 

Differentiating at the surface yields the total epithermal sink rate 

~ ~ ( 1 )  = [ 2 D , x 0 / ( x ~  + 4D,r)’!*] exp(-yt). (17) 

The epithermal distribution can now be included as a time-varying source in the 
solution for the thermaldistribution. Thishas asimilar form to the originalimplantation 
profile, except that the mean depth increases as mr. Assuming an absorbing surface, 
the relevant Green function is 

- exp[-(z +x)’/4Do(r - s)]) 
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Figure 5. The total sink rate of thermal positrons 
t o  the surface for positrons implanted epither- 
mally at different ranges. A thermdlizalion Lime 
of l o p s  and a bulk lifetime of loops were used. 
Diffusion coefficients of 10cm?s- '  and 1 cm2s- '  
for epithermal and thcrmal positrons, respect- 
ively, were used. The w f a c e  was assumed to be 
a perfect sink for all positrons. 

where DR is the thermal positron diffusion coefficient. The thermal distribution is 
calculated from the double integral 

u&f) = / ' / = g ( z l x , r l ~ ) ~ ~ ~ ( x ,  r ) & d t  (19) 
0 0  

leading, eventually to the thermal sink rate 

KO([) = [ .W~Y/ (D ,  - ~ e ) ] @ x p ( - A ~ ) l / ~ ' x i  + 4Dd - [ex~(-vOl/.\/G + 4D,f 
,i ~ . ~ .  , , 

~ ~~ ~~~~~ ~~ ~~ + exp(-Arjvn(y - A)/4(D, -os) 
x e x p k  - A)(x: + 4Dd) /4PE - DO) 
x Ierf[q\/(v - A K x 8  + 4D00/4(D, - D,)l 

- erfIv/(r - Mx8 + 4&9/4(De - DdlB 

.,:, , , 

(20) 

The two calculated sink rates K ,  and  are shown in figures 4 and 5, respectively, for 
different positron ranges, using reasonable values for the different parameters. Typical 
metal values of 100 ps and 1 cm2 s-' have been used for A-' and DR. A relatively long 
thermalization t h e y - '  = lOpshasbeenchosenandD,hasbeenestimatedas 10cm2s-' 
from the definition given previously. After lops ,  which is typically within the first 
channclofapositronlifetimespectrum, theepithermalsinkrateisanorder ofmagnitude 
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lower than the thermal sink rate. Furthermore, it is very rapidly reduced, by more than 
four orders of magnitude in the first 50 ps. Both of these observations suggest that, even 
for shallow implantation, epithermal effects are unlikely to be significant in a typical 
experiment. 

The populations contributing to the lifetime spectrum can then be calculated from 
thesinkratesrc,and K~ by solvingthe appropriaterateequations. The bulk (free thermal) 
papulation is calculated from the equation 

n d 4  = --Anb(?) + ~4) - x&) 

n,(t) = - Y n z ( f )  - K , ( f ) .  

(21) 

(22) 

where n,(r) is the spatial integral of equation (16) or  the solution to the rate equation 

Both have, obviously, the same solution 

n,(r) = (xo/t’x$ + ~ D J )  exp(-yt) 

which can be substituted into the solution for the hulk population 

nb(r) = exp(-yt) exp(d7)[vnC(z) - KdT)ldT. (24) 
0 

The bulk population, as a function of time, for different values of the positron rangex, 
is shown in figure 6.  For comparison. solutions to purely thermal diffusion (broken 
curves) are also shown. These are given by equation (23) with a substitution of D, and 
A for 0, and y. Apart from a depletion at short times, due to a finite thermalization 
time, the two calculations are very similar for deeply implanted positrons. Even for an 
implantation depth of 50 A, the two curves merge within 250 ps, becoming a simple 
exponential with a decay rate equal to the bulk annihilation rate. 

The surface, and p-Ps, populations are given by the solution equation (5 ) :  
I 

n, ( t )  = exp(-d,t) exp(d,r) ( e  5 ~ e ( ~ )  + ~ X ~ ( T ) )  V d7 (25) 
0 

with an appropriate substitution of the Ps parameters for the p-Ps population. The three 
different populations are shown, along with the total annihilation rate, in figure 7 for 
positrons implanted at 1000 A. As before, the broken curvesshow the solution without 
epithermal corrections. The greatest difference is in the surface-state population. 
Although the transport of epithermal positrons to the surface occurs within a very short 
time after implantation, those that are trapped in the surface state are very long lived 
and the cumulative effect is still noticeable after hundreds of picoseconds. Another 
noticeable effect of the early occupancy of the surface state by unthermalized positrons 
is a shift to shorter times of the maximum population. 

The total annihilation rate is shown for different positron ranges in figure 8. To 
enhance clarity the curves have been successively scaled by a factor of 5 and hence only 
the lowest pair (5000 A) shows the actual calculated annihilation rate. Two effects can 
be clearly seen. Firstly, as expected from the surface population, epithermal positrons 
reaching the surface increase the intensity of the longer component. This is most clearly 
seen for deeper implantations, when the intensity is lower, although the absolute change 
is in all cases about 3%. Secondly, probably because of epithermals feeding the p-Ps 
state which contributes a constant decay rate to the shorter component, the shorter 
component isslightly longer lived. Thereduction in annihilation rate at veryshort times 
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Figure 6. The bulk population of thermal posi- 
trons implanted epithermally (-) and ther- 
mally (----) at different ranges. A 
thermalization timeof IOpsanda bulklifetimeof 
IWps were used. Diffusion coefficients of 
10cm's.' and 1 cm2s-t for epilhermal and ther- 
mal positrons, respectively, were used. The sur- 
face was assumed to be a perfect sink for all 
positrons. 

Figure 7. Calculated populations of the pPs. sur. 
face-trapped and free-thermal-positron states for 
positronsimplantedepithermally (-)and ther- 
mally (----) With a range of 1000 A. A ther- 
malization time of lops and a bulk lifetime of 
I m p s  were used. Diffusion coefficients of 
10 cm?s-' and I cml SKI for epithermal and ther- 
mal positrons. respectively, Were used. Lifetimes 
of450psand125 pswereusedforthesmfacestate 
and pPs,  respectively. Branching ratios to the 
surface state and p-Ps were held constant at 1 and 
A for both thermal andepithermalpositrons. The 
surface was assumed to be a perfect sink for all 
posilrons. N ( l )  is the total annihilation rate, 
resulting from a weighted superposition of the 
three components. 

is an artefact of the assumption that unthermalized positrons do not annihilate and 
indicates the finite thermalization rate. 

5. Conclusions 

Annihilation spectra. resulting from the implantation of mono-energetic positrons into 
a perfect homogeneous solid, have been modelled using typical ambient-temperature 
parameter values. The resultingcurvescan be reasonably well described asa sumof two 
exponential components, although the intensities are not simply related to the time- 
averaged positron back diffusion probability. The longer component is, in the absence 
of thermal desorption, simply the annihilation rate of positrons trapped in the surface 
potential. Free-positron and p-Ps annihilations constitute the shorter component. 

The effects of epithermal positrons reaching the surface and of internal reflection of 
thermal positrons have been considered. Epithermal effects, even at shallow depths, 
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Figure 8. Relative annihilation rates, calculated 
using the previous parameter values for different 
ranges of the implantation profile: -, epi- 
thermal implantation; ----. thermal im- 

10-8 . l o -=  plantation. Successivecurves. in orderof decreas- 
ing depth, have been scaled by a factor of 5 to 
present a clearer picture. 
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are less significant than for time-independent measurements because of the relative 
short times involved in the epithermal transport processes, the main effect being an 
increase in the longer component by a few per cent of the total intensity. The lifetime of 
the shorter component is also increased because of mixing with the constant 125 ps p-Ps 
annihilation lifetime. 

At room temperature, internal reflection of thermal positrons can be neglected for 
deep source profiles. In practice, because of the rapidescape of unthermalized positrons 
from the near-surface region, all thermal sources can be considered as d a  Using the 
values in the text, the mean depth of the thermal source increases as v 4 D , t  (equation 
(16)), typically 20008, in lops. This is not the case, however, at low temperatures as 
the surface absorption coefficients vanish at zero temperature. A numerical solution 
with radiative boundary conditions appears to show a relatively simple scaling of the 
sink rates, similar to behaviour of the back-diffusion probability in the time-independent 
case. 
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